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A Statistical Approach for Testing
Cross-Phenotype Effects of Rare Variants

K. Alaine Broadaway,1 David J. Cutler,1 Richard Duncan,1 Jacob L. Moore,2 Erin B. Ware,3,4

Min A. Jhun,3 Lawrence F. Bielak,3 Wei Zhao,3 Jennifer A. Smith,3 Patricia A. Peyser,3

Sharon L.R. Kardia,3 Debashis Ghosh,5 and Michael P. Epstein1,*

Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype ef-

fects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model

each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants,

there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical

method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in

multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and contin-

uous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated

analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data

to demonstrate that our method, which we refer to as the Gene Association withMultiple Traits (GAMuT) test, provides increased power

over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of

Arteriopathy.
Introduction

The 1980s were an era of debate in the theoretical quanti-

tative genetics community between two competing

schools of thought.1 The question of interest was ‘‘What

is the nature of genetic variation contributing to complex

traits?’’ On one hand there was the infinitesimal school,2

which argued that complex traits were the result of muta-

tion/selection balance under stabilizing selection. The var-

iants that contributed to traits were a combination of very

rare alleles of potentially large effect combined with many

common alleles of exceedingly small effect. The opposing

camp, sometimes called Neo-Darwinian,3 argued that a

substantial fraction of genetic variation was contributed

by high-frequency alleles of large effect, whose frequency

was maintained through balancing selection.4 The neo-

Darwinian’s school leveled two interrelated and poten-

tially fatal criticisms at the infinitesimal camp: believing

in the infinitesimal model requires one to simultaneously

accept that (1) much of the standing genetic variation is

due to extremely rare alleles of large effect and (2) a large

fraction of the genome of an organism is contributing to

nearly every phenotype.3 That means that nearly every

rare, large-effect allele must simultaneously be contrib-

uting to a large number of different traits. The neo-

Darwinian school argued that the only alternative to

believing in this worldview was to suppose that a substan-

tial fraction of the variation in complex traits was contrib-

uted to by common alleles of large effect.

Perhaps without explicitly acknowledging it,5–7 the

genome-wide association study (GWAS) era was funda-
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mentally testing the predictions of the neo-Darwinian

school. We now know that, by and large, common alleles

of large effect do not exist. When considered collectively,

common variants can explain a sizable proportion of the

heritability for many complex traits like height, body-

mass index, and cardiovascular disease.8–10 However, com-

mon trait-influencing variants identified and replicated by

GWASs tend to have very modest effect sizes. Much of the

genetic contributors to complex traits still remain undis-

covered and are presumably due to very rare variation.

Thus, although it might be time to reject the neo-

Darwinian worldview in favor of the infinitesimal model,

we can not logically do so without simultaneously

embracing the central Neo-Darwinian critique of the infin-

itesimal school: most traits should be affected by a large

fraction of the genome, and rare alleles of large effect

should be generally highly pleiotropic for seemingly unre-

lated phenotypes. Moreover, if we adopt this worldview

whole-heartedly, it suggests a paradigm shift in how we

should approach genetic association studies.

If rare alleles of large effect are both ubiquitous and

generally highly pleiotropic, we can leverage this to

discover genes involved in complex traits. When pleiot-

ropy exists, an analysis that models multiple phenotypes

simultaneously in a multivariate or ‘‘cross-phenotype’’

framework will provide greater statistical power than a

standard univariate method that considers each pheno-

type separately.11,12 Because underlying genetic pleiotropy

will induce phenotypic correlation, a genetic association

that exists with multiple traits will be more readily detect-

able through cross-phenotype analyses due to the extra
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information provided by cross-phenotype correlation. This

information is ignored in univariate analyses. Addition-

ally, when pleiotropy is suspected, allowing for cross-

phenotype associations might yield a more biologically

plausible statistical model and potentially help to explain

shared pathogenesis.11,13

Cross-phenotype association tests for common variants

using SNPs have demonstrated considerable success.14,15

For example, common-variant cross-phenotype associa-

tion has been reported among Crohn disease and ulcera-

tive colitis,16 different facial morphology measures,17

and among bipolar disorder, autism spectrum disorder,

ADHD, major depressive disorder, and schizophrenia.18

However, although there are several excellent statistical

methods appropriate for cross-phenotype analysis of com-

mon genetic variants,19–24 theory tells us that rare alleles

cannot be ignored and that pleiotropy due to rare alleles

should be more pronounced. Unfortunately, there is a

shortage of analogous statistical approaches to assess

cross-phenotype associations of rare genetic variants.

Currently, most cross-phenotype association methods

are designed to assess the effect of a single polymorphism

at a time; however, in rare variant analysis, a test typically

requires aggregation of information frommultiple rare var-

iants within a gene simultaneously. One possible rare-

variant cross-phenotype test is a modification of the

common-variant method of Maity et al.23 Although the

Maity approach was developed to study the relationship

between multiple SNPs in a gene and multiple correlated

phenotypes using mixed models, it could be adapted to

consider rare variants rather than common SNPs. Addi-

tionally, Wang et al. proposed an alternative gene-level

test of pleiotropy that uses multivariate functional linear

models (MFLM).25 However, we note that the approaches

of Maity and Wang allow only for continuous phenotypes

and thus cannot be applied to important categorical phe-

notypes like presence or absence of a disease. Ideally, a

cross-phenotype test of rare variation should be able to

handle both continuous and categorical phenotypes and

be able to scale efficiently to handle an arbitrary number

of phenotypes. Here, we present a method that meets

both these criteria.

We propose a method called Gene Association with Mul-

tiple Traits (GAMuT) for association testing of high-dimen-

sional phenotype data with high-dimensional genotype

data. GAMuT relies on a machine-learning framework

called kernel distance-covariance (KDC)26–30 to provide a

nonparametric test of independence between a set of phe-

notypes and a set of genetic variants. The KDC framework

used by GAMuTassesses whether pairwise phenotypic sim-

ilarity in a sample is independent of pairwise rare-variant

genotypic similarity in a gene or region of interest. The

framework allows for an arbitrary number of phenotypes

that can be both continuous and/or categorical in nature

and similarly allows for an arbitrary number of genotypes,

thereby permitting gene-based testing of rare variants.

GAMuT can correct for important covariates, such as mea-
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sures of ancestry to account for population stratification.

Furthermore, GAMuT is a closed form test that yields ana-

lytic p values, thus scaling easily to genome-wide analysis.

Thismanuscript is organized as follows. First, we develop

GAMuT using the KDC framework and show how we

derive analytic p values for this test. We also describe

how we can adjust for covariates in GAMuT. Additionally,

we describe an efficient resampling strategy that can be

used if one wishes to construct a GAMuT test multiple

times using different similarity measures for phenotypes

and/or genotypes. This resampling strategy appropriately

corrects for multiple testing but is far less computationally

intensive than standard permutations. Next, we present

simulation work comparing GAMuT to MFLM and univar-

iate SKAT31 analysis of rare variants under various trait-

influencing models and demonstrate that our analytic

strategy can be considerably more powerful than these

competing approaches, both when pleiotropy truly exists

and also when variants influence only one of the pheno-

types under consideration. Finally, we apply GAMuT to

perform exome-chip analysis of multivariate phenotypic

measures of cardiovascular health using data from the Ge-

netic Epidemiology Network of Arteriopathy (GENOA).32
Material and Methods

Assumptions and Notation
Weassumea sampleofN subjectswhohavebeenmeasured formul-

tiple phenotypes of interest and possess sequencing or exome-

chip data in a target gene or region. For subject j (j ¼ 1,.,N), we

define Pj ¼ (Pj,1, Pj,2, ., Pj,L) as the L phenotypes of the subject

and allow such phenotypes to be continuous and/or categorical

in nature. We then define a matrix of phenotypes for the entire

sample P ¼ ðPT
1 ;P

T
2 ;.;PT

NÞT , which is of dimension N 3 L. Simi-

larly, we defineGj ¼ (Gj,1, Gj,2,., Gj,V) to be the genotypes of sub-

ject j atV rare-variant sites in the geneof interest,whereGj,v is coded

as the number of copies of the minor allele that the subject pos-

sesses at variant v. We then construct the matrix of rare-variant

genotypes for the sample as G ¼ ðGT
1 ;G

T
2 ;.;GT

NÞT which is of

dimension N 3 V.

GAMuT Test of Cross-Phenotype Associations
We create GAMuT to examine the relationship between pheno-

types P and rare-variant genotypes G. GAMuT is based on a

KDC machine-learning technique,26–30 which allows nonpara-

metric tests of independence between two distinct sets of multi-

variate variables. For each set of multivariate variables, KDC

constructs anN3Nmatrix with individual elements of thematrix

corresponding to similarity (or dissimilarity) in the variables

among different pairs of subjects. KDC then evaluates whether

the pairwise elements in the similarity matrix of one set of multi-

variate variables is independent of the pairwise elements in the

similarity matrix for the other set of multivariate variables.

Leveraging the KDC framework, we create a rare-variant test of

pleiotropy to test for independence between P (N 3 L matrix of

multivariate phenotypes) and G (N 3 V matrix of multivariate

rare-variant genotypes). To do this, we first develop an N 3 N

phenotypic-similarity matrix Y (based on P) and an N 3 N geno-

typic-similarity matrix X (based on G). The choice of how to
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model pairwise similarity or dissimilarity for a set of multivariate

outcomes is quite flexible. For example, for phenotypes P, we

can model the matrix Y using a projection matrix,33,34 such that

Y ¼ P(PTP)�1PT. We can also construct the model Y using user-

selected kernel functions.31,35–37 Denote the kernel function

y(Pi, Pj) as the measure of similarity between subjects i and j

across the L phenotypes. We can model y(Pi, Pj) using kernel

similarity functions like the linear kernel, yðPi;PjÞ ¼
PL

l¼1Pi;lPj;l;

a quadratic kernel, yðPi;PjÞ ¼ ð1þPL
l¼1Pi;lPj;lÞ2; or a Gaussian

kernel, yðPi;PjÞ ¼ expð�PL
l¼1ðPi;lPj;lÞ2=dÞ, where d is a tuning

parameter.

For genotypes G, we model the corresponding matrix X using

kernel functions x(Gi, Gj) that can take the same form (e.g., linear,

quadratic, or Gaussian) used to construct y(Pi, Pj). A few genetic-

specific kernel functions also exist, like the identity-by-state (IBS)

kernel, xðGi;GjÞ ¼
PV

v¼1IBSðGi;vGj;vÞ=2V, where IBS(Gi,v Gj,v)

denotes the number of alleles (0, 1, or 2) shared IBS by subjects i

and j at variant v. Also, we might wish to further augment

x(Gi, Gj) to preferentially upweight the contributions of particular

rare variants in G over others in the gene. For example, we may

wish to give more weight to variants that are more rare in the pop-

ulation or to variants that are predicted to be deleterious in na-

ture.38–40 We can do this by creating a diagonal weight matrix

W ¼ diag(w1, w2, ., wV), where wv reflects the relative weight

for the vth variant in the gene. Using W, we can then create a

weighted linear kernel function asX¼GWGT. Derivation of other

weighted kernel functions is straightforward.

Once we construct the similarity matrixes Y and X, we derive

our GAMuT approach as a test of independence between the

elements of these two matrices. We first center each matrix as

Yc ¼ HYH and Xc ¼ HXH. Here, H ¼ ðI � 1N1
T
N=NÞ is a centering

matrix with propertyHH¼H, I is an identitymatrix of dimension

N, and 1N is an N 3 1 vector with each element equal to 1. Using

Yc and Xc, we construct our GAMuT test of independence of the

two matrices as

TGAMuT ¼ 1

N
traceðY cXcÞ: (Equation 1)

Under the null hypothesis where the two matrices are indepen-

dent, TGAMuT follows the same asymptotic distribution as

1

N2

X
i;j
lX;ilY;iz

2
ij; (Equation 2)

where lX,i is the i
th ordered non-zero eigenvalue ofXc, lY,j is the j

th

ordered non-zero eigenvalue of Yc, and z2ij are independent and

identically distributed c2
1 variables.30 Given L phenotypes and V

rare-variant sites, and further assuming sample size N is larger

than both L and V, the maximum number of possible elements

in the summation will be L*V.

Based on the KDC literature, we could derive the p value of the

GAMuT test approximately using a gamma distribution26 or

instead via permutation techniques.28,30 In our experience, the

gamma approximation is accurate for p values as small as 0.01

but becomes less accurate in themore extreme tails of the distribu-

tion (results not shown). Given that large-scale genetic studies

require p values much smaller than 0.01 to declare significance

in the presence of multiple testing, the gamma approximation is

not suitable in this setting. The derivation of p values using per-

mutations is a valid alternative, but computationally demanding

and difficult to scale to genome-wide analyses. Consequently,

we instead derive p values for GAMuT using Davies’ exact

method,41 which is a computationally efficient method to provide
The Ame
accurate p values in the extreme tails of tests that follow mixtures

of chi-square variables.31 An implementation of Davies’ method is

available in the R package CompQuadForm.42
Relationship of GAMuT to Other Multivariate

Association Tests
Although the form of the GAMuT test is quite general, we note

that specific choices of Y and X can lead to test statistics that

have similar forms to other multivariate association tests previ-

ously published in the literature. If we assume a projection matrix

Y for the phenotypes (with each phenotype mean centered prior

to analysis) and assume X is the Gower distance (or some other

measure of genetic dissimilarity as opposed to similarity), the

GAMuT test has a form similar to the numerator of existing multi-

variate distance matrix regression (MDMR) tests.33,34,43 We note,

however, that MDMR procedures typically require permutations

for inference whereas we can derive analytic p values of GAMuT

directly via Davies’ method. MDMR tests’ reliance on permuta-

tions limits application of these techniques to smaller-scale studies

such as candidate-gene investigations. On the other hand,

GAMuT’s efficient derivation of analytic p values enables the

approach to be applied efficiently to whole-exome and whole-

genome sequencing projects.

In addition to MDMR, we also note that applying GAMuTusing

a linear kernel to model the phenotype similarity matrix Y and to

further model the genotype similarity matrix X results in a test

that becomes a rare-variant version of the multivariate kernel-ma-

chine test of Maity et al.23,27 created for the analysis of common

variants. The approach of Maity, however, required perturbations

to calculate p values of individual tests where again GAMuT can

derive p values analytically via Davies’ method.
GAMuT Testing Assuming Multiple Candidate

Matrices
The GAMuT test in the previous section requires a priori selection

of the functions used to construct the phenotypic similarity ma-

trix Y and genotypic similarity matrix X. In practice, though, it

is often unclear what the optimal choices for Y and X should be.

For example, an investigator might want to model phenotypes P

in the matrix Y using both the projection matrix and the linear

kernel function. Also, an investigator might want to construct

the genotype-similarity matrix X under different kernel functions

(e.g., linear and IBS) and assuming different weight functions (e.g.,

minor allele frequency [MAF] weights, functionality weights). If

we construct GAMuT tests under multiple different phenotypic

and genotypic similarity matrices, we then need to adjust for the

additional tests that were performed. To adjust for additional tests,

one could use a Bonferroni correction or apply permutations.

However, a Bonferroni correction probably will lead to conserva-

tive inference because these tests are correlated, whereas permuta-

tions are computationally demanding and unappealing on a

genome-wide level.

Rather than use Bonferroni or permutations, we follow the ideas

of Zhang et al.30 andWu et al.44 to develop a perturbation (resam-

pling) approach to correct for testing of multiple candidate

matrices in GAMuT that is more computationally efficient than

standard permutations. Assume we test M different combinations

ofYandX. For combinationm (m¼ 1,.,M), we let p(m) denote the

uncorrected GAMuT p value and further let l
ðmÞ
Y and l

ðmÞ
X denote

the vectors of all non-zero eigenvalues for Yc and Xc, respectively,

for that combination.
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We wish to determine whether the minimum observed p value

across the M tested combinations is significant after adjustment

for theM correlated tests. To do this, we use perturbations to create

an empirical distribution of minimum p values across the same M

combinations under the null hypothesis of no association. We

then calculate our corrected p value by comparing our minimum

observed p value to the empirical minimum p values generated

under the null hypothesis induced by the perturbation process.

In particular, we implement the following:

(1) Calculate the minimum observed p value across the M

different combinations as p� ¼ min1%m%MpðmÞ.
(2) For perturbation k (k ¼ 1,.K), generate a set of indepen-

dent c2
1 variables z*k of length equal to K*V.

(3) For each combination m, calculate the test T
ðmÞ
l ¼

1=N2
P

i;jl
ðmÞ
X;i l

ðmÞ
Y;j z

�
ij;k and obtain a new p value p

ðmÞ
k via

Davies’ method.

(4) Evaluate the minimum p value across all M combinations

for perturbation k as p�k ¼ min1%m%Mp
ðmÞ
k .

(5) Repeat steps 2–4 a total of K times and obtain the empirical

distribution of uncorrectedminimump values p�1; p
�
2;.; p�K.

(6) Derive the final p value as p ¼ K�1
P

I½p�k%p0�
Adjusting for Covariates
Pleiotropic tests must adjust for important covariates, such as prin-

cipal components of ancestry, to avoid potential confounding of

results. We can control for confounders before applying GAMuT

by regressing each phenotype separately on covariates of interest

and then using the residuals to form the phenotypic similarity ma-

trix Y. Although residualizing binary phenotypes is not standard,

studies have suggested that this procedure does not affect the val-

idity of genetic association tests in case-control studies.45,46 As we

describe in the Results, the residualizing procedure provides an

effective correction for confounders in the analysis of binary out-

comes within our simulated datasets.
Simulations
We conducted simulations to verify that GAMuT properly pre-

serves type I error and to assess power of GAMuT relative to

competing approaches for genetic analysis of multiple pheno-

types. To create genetic data for these simulations, we generated

20,000 haplotypes of 30 kb in size using COSI, a coalescent model

that mimics LD pattern, local recombination rate, and population

history for individuals of European descent.47 To create multivar-

iate phenotype data, we assume either six or ten phenotypes for

each subject generated from a multivariate normal distribution

with mean vector 0 and L 3 L residual correlation matrix S. To

model the residual correlation matrix, we considered scenarios

of low residual correlation among phenotypes (pairwise correla-

tion among phenotypes selected from a uniform (0, 0.3) distribu-

tion), moderate residual correlation (pairwise correlation selected

from a uniform (0.3, 0.5) distribution), and high residual correla-

tion (pairwise correlation selected from a uniform (0.5, 0.7)

distribution). To generate binary traits, we defined phenotype

measurements for the top quartile as affected (Pi,l ¼ 1) and defined

1st–3rd quartile measurements as controls (Pi,l ¼ 0). We considered

sample size N of either 1,000 or 2,500 subjects.

To investigate the performance of GAMuT under confounding

and to assess whether the approach can successfully adjust for rele-

vant covariates in this setting, we also simulated phenotypes un-
528 The American Journal of Human Genetics 98, 525–540, March 3
der a confounding model where phenotypes were independent

of genotypes, but both phenotypes and genotypes are associ-

ated with a normally distributed covariate Z. We simulated

phenotypes correlated with the covariate Z under the model

p � MVNð0:2Z;PÞ, where Z denotes the N 3 1 sample vector of

covariates. To simulate correlation between rare-variant genotypes

and covariate, we let 5% of the rare variants in our haplotypes be

causal. We set effect size, bZ,r, of each causal genetic variant r on Z,

as bZ;r ¼ ð0:3þ Nð0;0:1ÞÞ � jlog10ðMAFrÞ j , whereMAFr is the minor

allele frequency of causal variant r. Evaluating type I error under

this model allows us to verify that our approach to controlling

for confounders is valid.

We also performed type I error calculations to examine the val-

idity of our resampling approach to adjust for multiple similarity

matrices when applying GAMuT. For a given null dataset, we

applied GAMuTusing three combinations of phenotype similarity

matrices Y and genotype similarity matrices X:

(1) Model phenotypes using a projection matrix, model geno-

types using a weighted linear kernel.

(2) Model phenotypes using a linear kernel, model genotypes

using a weighted linear kernel.

(3) Model phenotypes using a projection matrix, model geno-

types using an unweighted linear kernel.

We then implement the perturbation procedure described

above to obtain a p value accounting for testing the three com-

binations of similarity matrices. For both continuous and

binary null simulations, we applied GAMuT to 10,000 simulated

datasets.

For power models, we considered simulation designs similar to

those proposed in the original SKAT paper.31 We simulated data-

sets in which 5% of the rare variants in our haplotypes were

modeled as causal. We set effect size of each causal variant, r, for

phenotype l, br,l, as br;l ¼ ð0:4þ Nð0;0:1ÞÞ � jlog10ðMAFrÞ j . This

formulation sets mean effect size of causal variant r as inversely

proportional to its MAF, such that very rare variants have on

average a larger effect size than less rare variants. The mean effect

size is based on the simulations performed for Wu et al.’s original

evaluation of SKAT.31 Allowing br,l to vary around a normal distri-

bution maintains the relationship between MAF and effect size

while allowing the variant to have a slightly different effect size

for each phenotype.

We performed power simulations both in situations where there

was no pleiotropy (i.e., only one of the modeled phenotypes was

associated with the rare causal variants) and also when there was

pleiotropy. Under pleiotropy, we varied the number of phenotypes

associated with the rare variants, such that not all of the tested

phenotypes will be dependent on the gene of interest. Under

models assessing ten phenotypes, we consider situations where

one, two, four, six, or eight phenotypes are actually associated

with the gene. Under models assessing six phenotypes, we

consider situations where only one, three, or five phenotypes are

associated. We control correlation among phenotypes through

consideration of the relative variance of phenotype explained by

the R causal variants. We define this relative variance for pheno-

type l as hl ¼
PR

r¼1b
2
r;l � 2MAFrð1-MAFrÞ. As in Galesloot et al.,11

we define the overall correlation between phenotypes l and l’

as El;l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hl0

p � Sl;l0 where Sl,l’ is (l,l’) element of the

L3 L residual phenotypic correlationmatrix. This allows the resid-

ual correlation structure among phenotypes to stay at the defined

values.
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For demonstration purposes, we also estimated power for

limited simulations where we considered multiple combinations

of phenotypic/genotypic similarity matrices for analyses. For

such simulations, we considered a weighted linear kernel to

form X and either the projection matrix or linear kernel to

form Y. We then implement the perturbation procedure described

above to obtain a p value accounting for the testing of the two sim-

ilarity matrices.

For all simulations and analyses reported here, unless specified

otherwise, we implement a weighting scheme based on the MAF

of each variant that weights very rare variants more heavily than

less rare variants. We selected the weighting scheme recommen-

ded by Wu et al.,31 setting wv ¼ Beta(MAFv, 1, 25)/Beta(0, 1,25).

We evaluate GAMuT using the simulated data and compare our

approach to competing strategies. For the analysis of continuous

phenotypes, we compared GAMuT to the MFLM approach of

Wang et al.25 Our implementation of MFLM used the B-spline

basis based on Pillai-Bartlett trace, selecting the default parameters

suggested by the authors for data analysis. Additionally, we

compared GAMuT to a standard rare-variant association approach

that ignored pleiotropy. Here, we consider the standard approach

to be application of the popular SKAT31 test, a powerful, kernel-

based univariate test for sequencing data. We applied SKAT to

each of the simulated phenotypes and then based inference on

the minimum SKAT p value across phenotypes analyzed. Because

we perform SKAT testing on each of our L phenotypes, we must

correct for multiple hypothesis testing. Although a permutation-

based procedure is the gold standard for multiple test correction,

it is computationally intensive and unlikely to scale to genome-

wide analysis. Instead, we perform multiple testing correction us-

ing two approaches. First, we implement a simple Bonferroni

correction of aBONFERRONI ¼ ae/L, where ae is the experimental-

wise error rate. Unfortunately, this approach can be conservative,

especially for tightly correlated phenotypes. We therefore also

consider a more liberal threshold by estimating the effective num-

ber of independent tests, Leff, where Leff is the number of principal

components necessary to explain either 98% or 90% of pheno-

typic variance in L phenotypes.48 We can then calculate a more

liberal correction of aEFFECTIVE ¼ ae/Leff. Although thresholds of

90%–98% of phenotypic variance are more liberal than 99.5%

threshold recommended by Gao et al.,48 we wanted to estimate

the upper bounds of power to detect an effect using SKAT. Correc-

tion using the permutation approach should therefore fall

somewhere between the conservative Bonferroni approach and

the liberal principal component approaches.

For the analysis of binary phenotypes, we are unaware of exist-

ing methods for testing cross-phenotype effects of rare variants.

Hence, we compared GAMuT to univariate SKAT testing only as

described in the previous paragraph.
Analysis of GENOA Study
High body mass index (BMI), low high-density lipoprotein (HDL),

and high blood pressure are interrelated conditions that increase

risk of developing cardiovascular disease, stroke, kidney disease,

and type 2 diabetes. These conditions are moderately heritable.

The heritability of BMI has been estimated to be between 17%9

and 34%49 depending on methods used for the estimation. Simi-

larly, heritability of HDL is estimated at 40%–48%,49,50 and the

estimates of heritability of blood pressure range from 30%49 to

48%–67%.51 Understanding genetic factors underlying these con-

ditions is of considerable clinical importance. Several GWASs,
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including pleiotropic analyses of common variants, have been per-

formed on one or more of the conditions.52–58 These studies have

been tremendously successful in identification of common genetic

variants; however, much of the genetic underpinnings of the con-

ditions remains unexplained.59

The GENOA study32,60 seeks to identify genetic variants that in-

fluence risk for hypertension and arteriosclerotic complications of

hypertension. The GENOA resources include a cohort of African

American sibships from Jackson, Mississippi. In the initial phase

of the GENOA study, all members of sibships containingR2 indi-

viduals diagnosed with hypertension prior to age 60 were invited

to participate, including both hypertensive and normotensive

siblings. GENOA investigators collected extensive phenotypic

information on each participant, including BMI, HDL, systolic

blood pressure (SBP), and diastolic blood pressure (DBP). We

selected these continuous measures for analysis. Additionally,

GENOA investigators genotyped 1,429 subjects on the Illumina

HumanExome Beadchip. We used the HumanExome-12 support

files provided by Illumina to identify 48,712 non-singleton, rare

or less-common autosomal genetic variants (MAF < 3%; hereafter

referred to as ‘‘rare-variant’’) that fell within known genes. We

further excluded genes with fewer than 5 rare-variant sites within

the GENOA dataset, leaving 3,277 genes in our analysis. Although

GENOA collects data on sibs, GAMuT assumes study subjects are

unrelated. Therefore, we randomly selected one sibling from

each family for inclusion in our analysis.

We performed standard data cleaning, removed subjects who

did not fast for at least 10 hr prior to phenotype collection, and

removed related subjects that were either identified as relatives

via pedigree information or identified as first-degree cryptic rela-

tives identified with the program RELPAIR.61 The final sample

for analysis consisted of 539 unrelated subjects with measures of

all four phenotypes. For each of the study participants, we also ob-

tained gender, age, smoking status (ever smoked at least 100 ciga-

rettes), and use of anti-hypertension or lipid-lowering medication,

and we calculated the top ten genetic principal components using

ancestry informative markers included on the Illumina array. We

applied GAMuTusing both a projection matrix and a linear kernel

to measure pairwise phenotypic similarity. We also ran univariate

SKAT on each of the four phenotypes and adjusted for multiple

testing. For all GAMuT and SKAT tests, we used a weighted linear

kernel (selecting the weighting scheme recommended by Wu

et al.,31 described above, as we used in our simulation work) to

measure pairwise genotypic similarity. We also applied MFLM to

the GENOA dataset as a comparison. The procedures followed

were in accordance with the ethical standards of the responsible

committee on human experimentation (institutional and na-

tional) and proper informed consent was obtained.
Results

Type I Error Simulations

Figure 1 shows the quantile-quantile (QQ) plots based on

application of GAMuT to null datasets consisting of

1,000 subjects assayed for ten phenotypes. We present

QQ plots both for binary and continuous phenotypes

assuming low, moderate, or high residual phenotypic cor-

relation. We provide additional QQ plots of the GAMuT

test for other combinations of phenotypes considered

and sample size in Figures S1–S3. For all models tested,
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Figure 1. GAMuT QQ Plots
The QQ plots applying GAMuT to 10,000 simulated null datasets assuming a sample size of 1,000. In each simulation, 10 phenotypes are
tested. Top row assumes binary phenotypes; bottom row assumes continuous phenotypes. Left column shows low residual phenotypic
correlation (correlation 0–0.3), middle column shows moderate residual correlation (correlation 0.3–0.5), and right column shows high
residual correlation (correlation 0.5–0.7).
GAMuT properly controls for type I error, even at the

extreme tails of the test. We further investigated the type

I error of GAMuT in the presence of confounding due to

a continuous covariate (see Material and Methods section)

where we adjusted for confounding by residualizing the

phenotypes on the covariate prior to analysis. Our QQ

plots in Figure S4 show that this residualization effectively

controls for the confounding for both binary and contin-

uous phenotypes that, unadjusted, would yield inflated

results.

Table 1 shows type I error at a R 0.001 of GAMuT,

MFLM, and univariate SKAT analyses of ten phenotypes

for N ¼ 1,000 and N ¼ 2,500, and Table S1 shows similar

results when analyzing six phenotypes. As expected based

on the QQ plots in Figures 1 and S1–S3, the GAMuT

approach maintains appropriate type I error across a range

of assumptions and significance thresholds. Meanwhile,

we observed appropriate type I error rates of the MFLM

as well as SKAT tests after multiple-testing correction.

The difference in type I error between the three SKAT ap-

proaches was minor, particularly at smaller significance

thresholds. This finding is consistent with previous publi-
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cations,48,62 particularly given the small number of tests

performed (either six or ten phenotypes).

Figure 2 shows GAMuT QQ plots for binary and contin-

uous phenotypes where we adjusted formultiple candidate

matrices (see Material and Methods section). The perturba-

tion procedure properly accounts for testing three combi-

nations of Y and X and properly controls for false positive

rate for a range of assumptions. By contrast, as we show in

Figures S5 (binary outcomes) and S6 (continuous out-

comes), using the minimum p value of GAMuT across

matrices tested (i.e., without multiple-testing correction)

yields inflated results, whereas the Bonferroni correction

yields deflated results.

Power Simulations

Next we compared the power of GAMuT with MFLM for

continuous traits and univariate SKATanalysis (using three

different multiple-testing corrections) for both continuous

traits and binary traits. For these power simulations, we set

sample size to 1,000. Power was estimated as the propor-

tion of p values < 2.5 3 10�6 (reflecting a genome-wide

correction for 20,000 genes) and was evaluated based on
, 2016



Table 1. Empirical Type I Error Rates Assuming Ten Phenotypes

Sample Size
Type of
Phenotypes

Phenotypic
Correlation

a ¼ 0.05 a ¼ 0.01 a ¼ 0.001

GAMuT MFLM

SKAT

GAMuT MFLM

SKAT

GAMuT MFLM

SKAT

Bonf. PC: 98% PC: 90% Bonf. PC: 98% PC: 90% Bonf. PC: 98% PC: 90%

1,000 continuous low .0453 .0503 .0455 .0455 .0545 .0076 .0099 .0096 .0096 .0112 .0007 .0009 .0010 .0010 .0011

moderate .0504 .0481 .0423 .0423 .0503 .0085 .0095 .0097 .0097 .0115 .0013 .0007 .0012 .0012 .0013

high .0517 .0484 .0462 .0498 .0509 .0104 .0138 .0100 .0102 .0129 .0009 .0013 .0010 .0011 .0011

binary low .0488 – .0447 .0447 .0481 .0093 – .0134 .0134 .0140 .0006 – .0023 .0023 .0023

moderate .0537 – .0429 .0429 .0461 .0128 – .0105 .0105 .0115 .0013 – .0028 .0028 .0029

high .0439 – .0474 .0487 .0509 .0076 – .0082 .0088 .0096 .0003 – .0013 .0013 .0014

2,500 continuous low .0512 .0493 .0447 .0474 .0567 .0090 .0099 .0077 .0101 .0127 .0014 .0012 .0007 .0007 .0007

moderate .0538 .0506 .0402 .0416 .0547 .0107 .0114 .0080 .0090 .0113 .0012 .0008 .0010 .0010 .0012

high .0457 .0496 .0496 .0502 .0510 .0091 .0115 .0090 .0093 .0101 .0009 .0018 .0012 .0012 .0012

binary low .0491 – .0360 .0480 .0529 .0107 – .0092 .0107 .0116 .0015 – .0017 .0017 .0017

moderate .0524 – .0384 .0450 .0491 .0121 – .0098 .0102 .0113 .0018 – .0015 .0015 .0015

high .0450 – .0455 .0457 .0503 .0081 – .0110 .0117 .0120 .001 – .0012 .0014 .0014

Empirical size for GAMuT, MFLM, and SKAT analyses at significance thresholds of 0.05, 0.01, and 0.001. Empirical size calculated from 10,000 null simulations. Simulations assume analysis of 10 phenotypes. Sample size was
set at either 1,000 or 2,500. Phenotypes were either continuous or dichotomous. Phenotypic correlation was low (correlation < 0.3), moderate (correlation 0.3–0.5), or high (correlation 0.5–0.7).

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

9
8
,
5
2
5
–
5
4
0
,
M
a
rch

3
,
2
0
1
6

5
3
1



Figure 2. QQ Plots for GAMuT Assuming Multiple Matrices Tested
The QQ plots applying GAMuT to 10,000 simulated null datasets assuming a sample size of 1,000. p values using three candidate
matrices combinations were obtained for each simulation. We then implement a perturbation procedure to obtain a p value accounting
for testing the three combinations of similarity matrices. In each simulation, ten phenotypes are tested. Top row assumes binary
phenotypes; bottom row assumes continuous phenotypes. Left column shows low residual phenotypic correlation (correlation
0–0.3), middle column shows moderate residual correlation (correlation 0.3–0.5), and right column shows high residual correlation
(correlation 0.5–0.7).
500 replicates of the data per model. Figure 3 shows the

power results when we analyze continuous phenotypes.

We plot power as a function of the number of phenotypes

that are truly associated with the causal variants. The figure

clearly shows that GAMuT outperforms both MFLM and

the standard univariate SKAT approach for all models

considered. The difference in power between the three

SKAT approaches was negligible; therefore, we show only

90% cutoff to determine the effective number of indepen-

dent tests, because it is the most anti-conservative correc-

tion method. As expected, GAMuT performs particularly

well against SKAT and MFLM as the ratio of associated to

unassociated phenotypes increases (i.e., as the gene is

increasingly pleiotropic). In addition, under models of no

pleiotropy where rare causal variants were associated

with only one of the phenotypes under consideration,

we observed the power of GAMuT to be approximately

equal or better than SKAT.

MFLM performs poorly in all of our assumptions. We

therefore simulated data that mimics the assumptions pre-
532 The American Journal of Human Genetics 98, 525–540, March 3
sented in the top row of Wang et al.’s Figure 4.25 The

differing assumptions are detailed in Figure S7; in brief,

the differences in our assumptions compared with the

Wang et al. manuscript are that the latter work assumes

smaller number of phenotypes, smaller genes, larger effect

sizes, a more lenient significance threshold, and a larger

percentage of causal variants. When we implement the

simulation strategy of Wang et al., we observe increases

in power for MLFM versus SKAT that are similar to those

in their paper. GAMuT performance is approximately

equivalent to MLFM under the simulation assumptions

of Wang et al.

Figure 4 shows similar results when binary phenotypes

are modeled. Because MFLM is valid only for continuous

outcomes, we compare GAMuT only to univariate SKAT

for binary outcomes. We observed similar improvements

of power for GAMuT compared to SKAT in our binary sim-

ulations as we did for our continuous simulations. Under

pleiotropic models, the improvement in power of GAMuT

over SKAT grows more noticeable as the number of
, 2016



Figure 3. Power to Detect Cross-Phenotype Effects: Continuous Phenotypes
Power for GAMuT (red), univariate SKAT using a 90% cutoff to determine effective number of independent tests (blue), and MFLM
(green) is plotted as a function of number of continuous phenotypes associated with the gene of interest. Top row assumes six contin-
uous phenotypes are tested in each simulation, and bottom row assumes ten continuous phenotypes are tested. Left column shows low
residual phenotypic correlation (correlation 0–0.3), middle column shows moderate residual correlation (correlation 0.3–0.5), and right
column shows high residual correlation (correlation 0.5–0.7).
phenotypes associated with the gene increases. At the

same time, even under power models where there is no

pleiotropy (only one phenotype associated with the rare

variants), our results indicate GAMuT is at least as powerful

compared with the univariate SKAT approaches under

models assuming low correlation, and in fact is more

powerful than the univariate approach under moderate

and high correlation structure.

We also implemented the perturbation approach to

model phenotypic similarity using both the projectionma-

trix and the linear kernel. For both cases, we used the

weighted linear kernel to model genotypic similarity. In

Figure 5 we compare power of GAMuTusing the projection

matrix against power when two candidate matrices are

considered (projection and linear kernel), implementing

the perturbation procedure to account for testing two com-

binations of Y. Power in Figure 5 is defined as the propor-

tion of p values less than 1.5 3 10�5, to reflect the study-

wide significance threshold we will use for the GENOA

data. We also show power using the linear kernel to model

phenotypic similarity. Although the linear kernel was not

as powerful as the projection matrix on our simulated

data, simulations indicate that the perturbation procedure

retains much of the power of the optimal kernel approach.
The Ame
Application to GENOA Dataset

We use the GENOA dataset to test for associations between

BMI, HDL, SBP, DBP, and rare variants in 3,277 genes. Prior

to analysis by GAMuT, we controlled for gender, age, smok-

ing status, use of anti-hypertension medication, use of

lipid-lowering medication, and ancestry on the 539 unre-

lated subjects. After adjusting for covariates, correlation

of the four phenotypes was low to moderate with the

largest pairwise correlation (0.67, Pearson’s product-

moment correlation p value < 2.2 3 10�16) between

SBP and DBP (see Table 2). We applied GAMuT using

both a projection matrix and a linear kernel to measure

pairwise phenotypic similarity. For comparison, we ran

MFLM as well as univariate SKAT on each of the four

phenotypes and adjusted for multiple testing. For all

GAMuT and SKAT tests, we used a weighted linear kernel

tomeasure pairwise genotypic similarity.We set a stringent

study-wise significance threshold of 1.5 3 10�5, which

corresponds to a Bonferroni correction based on the

number of genes tested (3,277): aBONFERRONI ¼ 0.05/

3,277. We considered p values less than p < 1 3 10�3 as

suggestive.

Figure 6 provides genome-wide results using GAMuTand

univariate SKAT analyses with top findings highlighted
rican Journal of Human Genetics 98, 525–540, March 3, 2016 533



Figure 4. Power to Detect Cross-Phenotype Effects: Binary Phenotypes
Power for GAMuT (red) and univariate SKATusing a 90% cutoff to determine effective number of independent tests (blue) is plotted as a
function of number of binary phenotypes associated with the gene of interest. Top row assumes six binary phenotypes are tested in each
simulation, and bottom row assumes ten binary phenotypes are tested. Left column shows low residual phenotypic correlation (corre-
lation 0–0.3), middle column shows moderate residual correlation (correlation 0.3–0.5), and right column shows high residual correla-
tion (correlation 0.5–0.7).
in Table 3. None of the methods identified any genes asso-

ciated at the study-wide significance threshold. Using the

linear kernel, GAMuT identified five genes of suggestive

significance. Of note, SELP, which was identified as sug-

gestive significance by GAMuT (p ¼ 1.9 3 10�4), has

previously been associated with traits related to the four

GENOA phenotypes. Haplotypes or common polymor-

phisms in SELP have been associated with myocardial

infarction63,64 and thromboembolic stroke.65 Levels of

P-selectin, the protein encoded by SELP, is increased in

hypercholesterolemic individuals66 and individuals with

unstable angina.67 P-selectin levels were significantly asso-

ciated with carotid artery stiffness and wall thickness

among Japanese individuals with type II diabetes, hyper-

tension, or hyperlipidemia.68 The same study found that

percentage of P-selectin-positive platelets was positively

associated with BMI, SBP, and DBP and inversely associated

with HDL.

The projection matrix form of GAMuT identified four

genes of suggestive significance. p values from the two

forms of GAMuTwere strongly correlated (Pearson correla-

tion ¼ 0.90). After accounting for confounders, GAMuT

did not demonstrate any systematic inflation across the

genome (see QQ plots in Figure 6).
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In order to correct for using two phenotypic similarity

matrices for GAMuT, we performed the perturbation

approach described in the Material and Methods on the

eight genes with p values of less 13 10�3 for either GAMuT

or SKAT. The p values obtained through combined pertur-

bation method are also shown in Table 3. Of the eight

genes identified as suggestive by either or both of the

GAMuTapproaches, five remained suggestive after correct-

ing for use of two GAMuT similarity matrices (including

SELP).

We investigated whether our top genetic associations for

the modeled phenotypes (SBP/DBP/HDL/BMI) in Table 3

were possibly spurious due to the fact that the phenotypes

analyzed are secondary phenotypes collected in a study as-

certained on a correlated primary phenotype (hyperten-

sion). To verify that a confounding association between

rare-variant genotypes at our top genes and hypertension

was not driving our results, we performed univariate

SKAT testing of our top genes in Table 3 on the primary hy-

pertension variable. We observed none of our top genes to

be significantly associated with hypertension.

The SKAT p values using the three multiple testing

correction methods were identical across all genes

tested. SKAT did not identify any genes at genome-wide
, 2016



Figure 5. Power to Detect Pleiotropic Effect using Multiple Sim-
ilarity Matrices
Power for GAMuT assuming a projection matrix (red), GAMuT
assuming a linear kernel (yellow), GAMuT assuming testing of
both projection matrix and linear kernel (orange), univariate
SKAT using a 90% cutoff to determine effective number of inde-
pendent tests (blue), and MFLM (green). In each simulation, ten
continuous phenotypes with moderate residual correlation (corre-
lation 0.3–0.5) are tested.

Table 2. Correlation of GENOA Phenotypes

BMI HDL SBP DBP

BMI 1 -0.17* 0.09* 0.02

HDL – 1 �0.01 �0.03

SBP – – 1 0.67*

DBP – – – 1

Correlation among the four GENOA phenotypes: bodymass index (BMI), high-
density lipoprotein (HDL), systolic blood pressure (SBP), and diastolic blood
pressure (DBP). Asterisk indicates correlations are nominally significant (Pear-
son’s product-moment correlation p value < 0.05).
significance. It identified four genes at the suggestive sig-

nificance threshold, all of which were identified by one

or both of the GAMuT tests. When we applied MFLM to

the GENOA data, we observed sizeable inflation of the

p values. The p value inflation was not resolved by in-

verse-normal transforming the phenotypes, as performed

in Wang et al.25 See Figure S8 for QQ plots of the untrans-

formed and transformed analyses.

Running the GAMuT analyses on a single-threaded R

script on an Intel i7-2720QM CPU took 22.3 min using

either the linear kernel or the projection matrix to model

phenotypic similarity. Implementing the perturbation

approach (1 3 106 replicates per gene) required approxi-

mately 44.5 min of computing time per gene analyzed.
Discussion

Some patterns in the genetic basis of complex traits have

emerged in prior studies. First, common variants of rela-

tively small individual effect located throughout the

genome collectively explain a large fraction of the total ge-

netic variance.9,69–78 Second, for some disorders such as

autism,79,80 more than a thousand genes appear capable

of harboring exceedingly rare, large-effect mutations.

Although it is still unclear whether these two patterns are

ubiquitous, they are central predictions of the infinitesimal
The Ame
model of allele effects. Moreover, we know from detailed

theoretical analysis3 that if the infinitesimal model is

true for most phenotypes, then most rare large-effect mu-

tations should be highly pleiotropic.

We have presented GAMuT, a framework for cross-

phenotype analysis of rare variants using a nonparametric

distance-covariance approach.26,27,30 This approach can

accommodate both binary and continuous phenotypes

and can adjust for covariates. The GAMuT test derives an-

alytic p values based on Davies’ exact method, thereby

improving computational efficiency and permitting appli-

cation on a genome-wide scale. Like the popular SKAT

framework for univariate rare variant analysis, our

approach allows for inclusion of prior information, such

as biological plausibility of the variants under study, and

further remains powerful when a gene harbors a mixture

of rare causal variants that act in different directions on

phenotype. Our approach demonstrates greater power

than SKAT and MFLM when pleiotropy exists. Further,

simulations indicate that even if only one phenotype is

associated with the gene of interest (i.e., no pleiotropy is

occurring), GAMuT is at least as powerful as univariate

SKAT analyses after multiple-testing adjustment. These re-

sults hold for both continuous and binary outcomes.

We provide R software implementing GAMuT on our

website (see Web Resources), which can be run through

software packages like PLINK, PLINK-SEQ, or EPACTS if

desired. GAMuT analysis of simulated datasets comprised

of 1,000 subjects and 10 phenotypes takes 0.52 s per

gene for either continuous or binary phenotypes using a

R script running single-threaded on an a 1.7 GHz Intel

Core i7 CPU processor. Increasing the number of pheno-

types or rare variants tested does not substantially increase

GAMuT’s run-time. However, increasing sample size does

increase run time. For sample sizes of N ¼ 2,500, 5,000,

10,000, 20,000, and 30,000 subjects, we found that

GAMuT takes approximately 4.1 s, 13.2 s, 68.6 s, 580 s,

and 3,600 s per gene, respectively, for either continuous

or binary phenotypes. Based on these estimates, we feel

genome-wide analysis using GAMuT is feasible even with

enormous sample sizes with the aid of parallel computing.

GAMuT’s perturbation approach to adjust for multiple

combinations of phenotype/genotype similarity matrices

when testing a gene is computationally far more efficient
rican Journal of Human Genetics 98, 525–540, March 3, 2016 535



Figure 6. Results of GENOA Analyses
Left column shows Manhattan and QQ plots for GAMuT using a projection matrix for phenotypes. Middle column shows Manhattan
and QQ plots for GAMuT using a linear kernel for phenotypes. Right column shows Manhattan and QQ plots for SKAT, using a 90%
cutoff to determine the effective number of independent tests. Horizontal blue line indicates suggestive significance threshold. Horizon-
tal red line indicates study-wide significance.
than permutations but still remains intensive. For a sample

size of 10K, the total computation time required to run

K ¼ 106 perturbations for a single gene is ~5–6 hr for

M ¼ 2 combinations and ~10–12 hr for M ¼ 4 combina-

tions. Computation timescales linearly with number of

perturbations performed and number of combinations as-

sessed. Sample size has only a minor effect on perturbation

run time; for example, increasing sample size by a factor of

10 increases computation time only by a factor of approx-

imately 2. Although perturbations are computationally

demanding, we note that we can circumvent this compu-

tational issue in a couple of ways. First, we can elect to

apply the perturbation approach to just the small set of

genes with a minimum unadjusted p value (across the M

combinations considered) smaller than the unadjusted

genome-wide significance threshold; genes that fail to
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meet this criteria will be of little or no interest for follow

up. This strategy is a variation of the strategy we applied

in our GENOA analyses. Alternatively, if one wanted to

apply the perturbation procedure to each of 20,000 genes,

then one could consider an adaptive perturbation strategy

similar in logic to the adaptive permutation procedure in

PLINK81 to adjust for multiple testing in GWASs. We will

explore this idea in future work.

We applied GAMuT to exome-chip data from the

GENOA study to identify genes harboring rare variants

with cross-phenotype effects on four phenotypes: BMI,

HDL levels, SBP, and DBP. Using the linear kernel to model

phenotypic similarity and the weighted linear kernel to

model genotypic similarity, we detected eight genes that

were suggestively associated with our phenotypes. Of

note, common variants and gene product levels of one
, 2016



Table 3. Top GENOA Results

Gene Symbol MIM Number Chromosome
Number Rare
Variants

GAMuT

SKAT: 90% PCProjection Matrix Linear Kernel
Combined
(Perturbation)

SELP 173610 1 8 4.8 3 10�3 1.9 3 10�4 2.8 3 10�4 4.9 3 10�4

DISP1 607501 1 8 1.0 3 10�4 8.1 3 10�3 1.4 3 10�4 7.3 3 10�3

ARHGEF10 608136 8 14 2.8 3 10�2 7.9 3 10�4 1.0 3 10�3 6.6 3 10�4

COL17A1 113811 10 11 6.3 3 10�4 1.1 3 10�3 9.2 3 10�4 9.0 3 10�3

STRA6 610745 15 7 1.1 3 10�3 9.9 3 10�4 1.5 3 10�3 3.4 3 10�3

ZNF222 NA 19 5 8.8 3 10�4 3.6 3 10�3 1.4 3 10�3 4.5 3 10�4

COL9A3 120270 20 5 5.6 3 10�5 2.2 3 10�5 2.3 3 10�5 6.7 3 10�4

FAM83F NA 22 5 3.8 3 10�3 4.4 3 10�4 6.6 3 10�4 9.3 3 10�3

We identified eight genes in the GENOA dataset with p values of at least suggestive significance (p < 1 3 10�3) using either GAMuT or SKAT, using a 90% cutoff
to determine the effective number of independent tests. For the eight genes we provide gene name, chromosomal location of gene, number of rare variants
(MAF < 3%) found in each gene in the GENOA dataset, and p values for the four approaches.
such gene, Selectin P (SELP [MIM: 173610]), have previ-

ously been associated with BMI, SBP, DBP, and HDL.66,68

GAMuT’s KDC framework is amenable to several prom-

ising extensions that we will explore in future work.

Because GAMuT is an omnibus test, an association of the

gene with just one of the tested phenotypes (i.e., no pleiot-

ropy) could result in a significant finding. Although the

result is valid, researchers will often wish to identify which

underlying phenotype(s) of those modeled are directly

associated with the gene of interest. Additionally, if we

identify a cross-phenotype association, a follow-up anal-

ysis could be to assess whether the cross-phenotype effect

is due to biological pleiotropy (a causal locus directly

affecting more than one trait) or mediation pleiotropy

(a causal locus affecting only one trait, which in turn

affects another trait). Existing mediation analyses are not

intended to handle high-dimensional traits; we propose

the creation of KDC procedures to identify whether an

observed cross-phenotype association is mediated by a

different set of phenotypes. Additionally, we could also

perform post hoc GAMuT of different subgroupings of

the phenotypes to identify the true phenotypes associated

with the gene and adjust for multiple testing using pertur-

bations. We will pursue these ideas in future work.

GAMuT currently assumes unrelated subjects; however,

it should be reasonably straightforward to extend GAMuT

to allow for case-parent trio studies. The work by Jiang

et al.82 provides a framework for transforming genotypic

data for trios into data that is amenable to a kernel-based

framework. Specifically, the Jiang method uses the quanti-

tative transmission disequilibrium test introduced by

Abecasis et al.83 to decompose observed genotypes into

between-family and within-family components, and then

integrates within-family genetic components into a

kernel-machine regression framework. Although the Jiang

method uses a KMR approach and is therefore appropriate

only for univariate phenotype analyses, an analogous

approach, using GAMuT, should allow for high-dimen-
The Ame
sional phenotype data. Finally, one might be interested

in combining cross-phenotype association results from

multiple studies through a meta-analysis. GAMuT is de-

signed to test for rare variant cross-phenotype associations

in a single dataset. However, themeta-analysis approach in

Lee et al.,84 which is designed to combine results of multi-

ple KMR-based studies, should be readily extendible to

KDC results, such as those obtained via GAMuT.

That pleiotropy might be ubiquitous should come as no

surprise. The central organismal level result of pleiotropy

will be the frequent occurrence of comorbid diagnoses.

Neuropsychiatric disorders, for instance, are particularly

laden with comorbid diagnoses. The National Institute of

Mental Health (NIMH) estimates that as many as 45% of

individuals diagnosed with a mental disorder meet criteria

for two or more disorders.85 Likewise, nearly 75% of adults

with diabetes also have hypertension,86 and individuals

with rheumatoid arthritis are about twice as likely to

suffer from myocardial infarction as individuals without

arthritis.87 Although some of these overlapping pheno-

types are ultimately due to environmental risk factors,

other comorbidities are almost certainly explained by com-

mon genetic pathways. Ignoring comorbidity, or worse,

setting inclusion criteria that exclude individuals suffering

a comorbid diagnosis, will limit biological understanding

of complex traits and might limit our ability to detect

missing heritability.
Supplemental Data

Supplemental Data include eight figures and can be found

with this article online at http://dx.doi.org/10.1016/j.ajhg.2016.

01.017.
Acknowledgments

This work was supported by NIH grants HG007508, HL086694,

HL119443, MH071537, GM117946, and AR060893. For purposes
rican Journal of Human Genetics 98, 525–540, March 3, 2016 537

http://dx.doi.org/10.1016/j.ajhg.2016.01.017
http://dx.doi.org/10.1016/j.ajhg.2016.01.017


of disclosing duality of interest, M.P.E. is a consultant for Amnion

Laboratories.

Received: July 9, 2015

Accepted: January 29, 2016

Published: March 3, 2016
Web Resources

The URLs for data presented herein are as follows:

Epstein software, http://www.genetics.emory.edu/labs/epstein/

software

OMIM, http://www.omim.org/
References

1. Barton, N.H., and Turelli, M. (1989). Evolutionary quantitative

genetics: how little do we know? Annu. Rev. Genet. 23,

337–370.

2. Lande, R. (2007). The maintenance of genetic variability by

mutation in a polygenic character with linked loci. Genet.

Res. 89, 373–387.

3. Turelli, M. (1984). Heritable genetic variation via mutation-se-

lection balance: Lerch’s zeta meets the abdominal bristle.

Theor. Popul. Biol. 25, 138–193.

4. Gillespie, J.H. (1994). The Causes of Molecular Evolution (Ox-

ford University Press).

5. Lander, E.S. (1996). The new genomics: global views of

biology. Science 274, 536–539.

6. Collins, F.S., Guyer, M.S., and Charkravarti, A. (1997). Varia-

tions on a theme: cataloging human DNA sequence variation.

Science 278, 1580–1581.

7. Chakravarti, A. (1999). Population genetics–making sense out

of sequence. Nat. Genet. 21 (1, Suppl), 56–60.

8. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders,

A.K., Nyholt, D.R., Madden, P.A., Heath, A.C., Martin, N.G.,

Montgomery, G.W., et al. (2010). Common SNPs explain a

large proportion of the heritability for human height. Nat.

Genet. 42, 565–569.

9. Yang, J., Manolio, T.A., Pasquale, L.R., Boerwinkle, E., Capor-

aso, N., Cunningham, J.M., de Andrade, M., Feenstra, B., Fein-

gold, E., Hayes, M.G., et al. (2011). Genome partitioning of

genetic variation for complex traits using common SNPs.

Nat. Genet. 43, 519–525.

10. Simonson, M.A., Wills, A.G., Keller, M.C., andMcQueen, M.B.

(2011). Recent methods for polygenic analysis of genome-

wide data implicate an important effect of common variants

on cardiovascular disease risk. BMC Med. Genet. 12, 146.

11. Galesloot, T.E., van Steen, K., Kiemeney, L.A., Janss, L.L., and

Vermeulen, S.H. (2014). A comparison of multivariate

genome-wide association methods. PLoS ONE 9, e95923.

12. Allison, D.B., Thiel, B., St Jean, P., Elston, R.C., Infante, M.C.,

and Schork, N.J. (1998). Multiple phenotype modeling in

gene-mapping studies of quantitative traits: power advan-

tages. Am. J. Hum. Genet. 63, 1190–1201.

13. Chavali, S., Barrenas, F., Kanduri, K., and Benson, M. (2010).

Network properties of human disease genes with pleiotropic

effects. BMC Syst. Biol. 4, 78.

14. Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M., and Smol-

ler, J.W. (2013). Pleiotropy in complex traits: challenges and

strategies. Nat. Rev. Genet. 14, 483–495.
538 The American Journal of Human Genetics 98, 525–540, March 3
15. Sivakumaran, S., Agakov, F., Theodoratou, E., Prendergast,

J.G., Zgaga, L., Manolio, T., Rudan, I., McKeigue, P., Wilson,

J.F., and Campbell, H. (2011). Abundant pleiotropy in human

complex diseases and traits. Am. J. Hum. Genet. 89, 607–618.

16. Lees, C.W., Barrett, J.C., Parkes, M., and Satsangi, J. (2011).

New IBD genetics: common pathways with other diseases.

Gut 60, 1739–1753.

17. Liu, F., van der Lijn, F., Schurmann, C., Zhu, G., Chakravarty,

M.M., Hysi, P.G., Wollstein, A., Lao, O., de Bruijne, M., Ikram,

M.A., et al. (2012). A genome-wide association study identifies

five loci influencing facial morphology in Europeans. PLoS

Genet. 8, e1002932.

18. Cross-Disorder Group of the Psychiatric Genomics Con-

sortium (2013). Identification of risk loci with shared effects

on five major psychiatric disorders: a genome-wide analysis.

Lancet 381, 1371–1379.

19. Ferreira, M.A., and Purcell, S.M. (2009). A multivariate test of

association. Bioinformatics 25, 132–133.

20. Huang, J., Johnson, A.D., andO’Donnell, C.J. (2011). PRIMe: a

method for characterization and evaluation of pleiotropic re-

gions from multiple genome-wide association studies. Bioin-

formatics 27, 1201–1206.

21. O’Reilly, P.F., Hoggart, C.J., Pomyen, Y., Calboli, F.C., Elliott, P.,

Jarvelin, M.R., and Coin, L.J. (2012). MultiPhen: joint model

of multiple phenotypes can increase discovery in GWAS.

PLoS ONE 7, e34861.
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